4. ÍÀÉÏÐÎÑҲز ÂËÀÑÒÈÂÎÑÒ² ÏÐÎÃÐÀÌ
          4.1.
Äîñë³äèòè öèêë íà ñê³í÷åíí³ñòü 
          ïîêè x>0 ïîâò x ¬ x-1 êö .
          Ðîçâ`ÿçîê. Íåîáõ³äíà óìîâà ñê³í÷åííîñò³ öèêëó î÷åâèäíî
âèêîíóºòüñÿ. Ðîçãëÿíåìî ôóíêö³þ Â(õ)=[x]+1. Îñê³ëüêè [x]³0 ïðè x>0,
òî x>0
òÿãíå B(x)>0. Îñê³ëüêè [x-1]=[x]-1, òî Â(õ)=[x]+1>[x]=[x-1]+1=B(x-1). Îòæå B(x) - îáìåæóâàëüíà ôóíêö³ÿ ³ öèêë
ñê³í÷åííèé.
          4.2. Âñòàíîâèòè óìîâè
ñê³í÷åííîñò³ öèêë³â:
à)       ïîêè  x<>0 ïîâò  x ¬ x-1 êö;
á)      ïîêè  x>0 ïîâò  x ¬ x+1 êö;
â)       ïîêè  x<=b ïîâò  x ¬ x+a êö;
ã)       ïîêè  x<>b ïîâò  x ¬ x+a êö;
ä)      ïîêè  x<y ïîâò  z ¬ x; x ¬ y; y ¬ z+2 êö.
          4.3. Äîâåñòè ñê³í÷åíí³ñòü öèêëó
â àëãîðèòì³
          Àëã Circle_1 öå
                   çì³í
n: ö³ë;
          ïî÷ 
                   âçÿòè(n);
                   ïîêè n>1 ïîâò
                             ÿêùî
n mod 2 =0 òî n ¬ n div 2
                             ³íàêøå
n ¬ n+1 
                             êð
                   êö;
                   ïîêàçàòè(n)
          êà.
          4.4. Äîâåñòè íåñê³í÷åíí³ñòü
öèêëó â àëãîðèòì³
          Àëã Circle_2 öå
                   çì³í
n: ö³ë;
          ïî÷ 
                   âçÿòè(n);
                             ïîêè n>1 ïîâò
                                      ÿêùî
n mod 2 =0 òî n ¬ n div 2+1
                                      ³íàêøå
n ¬ n+1 
                                      êð
                             êö;
                   ïîêàçàòè(n)
          êà.
          4.5.
Âñòàíîâèòè óìîâè ñê³í÷åííîñò³ öèêëó ó íàñòóïíîìó ôðàãìåíò³ àëãîðèòìó
          s¬ 0;
          ïîêè
n<>m ïîâò
                   n
¬ n+1; s ¬ s+1
          êö
          4.6. Ñêëàñòè àëãîðèòì 
ä³ëåííÿ íàòóðàëüíèõ ÷èñåë n i m íàö³ëî ç îñòà÷åþ:
          n=q*m+r, 0<=r<m.
          Ðîçâ`ÿçîê. Âèáåðåìî ïî÷àòêîâ³ çíà÷åííÿ  q=0, r=n.  öüîìó âèïàäêó óìîâà
                             J=(n=m*q+r)&(r>=0)
î÷åâèäíî ³ñòèííà. Ïîáóäóºìî öèêë òàêèì ÷èíîì, ùîá óìîâà J áóëà éîãî ³íâàð³àíòîì, à
óìîâó ïîâòîðåííÿ öèêëó âèáåðåìî òàê, ùîá éîãî çàïåðå÷åííÿ ðàçîì ç ³íâàð³àíòîì Øa & J äàâàëî á óìîâó çàäà÷³. Î÷åâèäíî, a=Ø (r<m) = (r>=m).
          Áóäåìî øóêàòè 䳿, ùî
çáåð³ãàþòü óìîâó J ïðè óìîâ³ a. Çíà÷åííÿ çì³ííî¿ q â ðåçóëüòàò³ âèêîíàííÿ ö³º¿ 䳿,
î÷åâèäíî, ïîâèííå çá³ëüøóâàòèñÿ. Ðîçãëÿíåìî çá³ëüøåííÿ q íà 1. Òîä³ r ïîòð³áíî çìåíøèòè íà âåëè÷èíó (q+1)*m-q*m=m, ùîá çàáåçïå÷èòè çáåðåæåííÿ J .Òàêèì ÷èíîì, ïàðà ïðèñâîºíü q
¬  q+1; r ¬  r-m çáåð³ãຠóìîâó J ïðè r>=m. Îñê³ëüêè çàäà÷à ìຠçì³ñò ïðè íàòóðàëüíèõ m ³ íåâ³ä`ºìíèõ ö³ëèõ n, òî ïåðåäáà÷èìî â í³é çàõèùåíå ââåäåííÿ. Îòðèìàºìî àëãîðèòì: 
          àëãîðèòì Div öå
                   çì³í
m,n,q,r :ö³ë;
          ïî÷
                   ïîâò
                             âçÿòè
(m,n) 
                   äî
(m>0)&(n>=0)
;
                   q¬ 0; r¬ n;
                   ïîêè
r>=m ïîâò 
                             q¬ q+1; r¬ r-m
                   êö;
                   ïîêàçàòè(q,r)
          êà.
          Ñïàäíîþ ö³ëî÷èñëîâîþ
âåëè÷èíîþ, î÷åâèäíî, º çíà÷åííÿ çì³ííî¿ r, îñê³ëüêè m>0 , à
îáìåæóâàëüíîþ ôóíêö³ºþ - ôóíêö³ÿ B(r,m)=r-m.
          4.7. Ñêëàñòè àëãîðèòì îá÷èñëåííÿ íàéá³ëüøîãî ñï³ëüíîãî
ä³ëüíèêà äâîõ íàòóðàëüíèõ ÷èñåë m, n .
          Ðîçâ`ÿçîê 1. Çàäà÷à ïîëÿãຠâ îá÷èñëåíí³ ôóíêö³¿,
ïîçíà÷èìî ¿¿ ÍÑÄ, äâîõ íàòóðàëüíèõ àðãóìåíò³â: ÍÑÄ(m,n). Ïðè m=n îá÷èñëåííÿ ÍÑÄ òðèâ³àëüíå, òàê ÿê ÍÑÄ(m,m)=m.
           ñèëó àäèòèâíîñò³ ôóíêö³¿
ÍÑÄ âîíà ³íâàð³àíòíà â³äíîñíî ïåðåòâîðåíü
          m ¬  m - n  ÿêùî  m>n
          n
¬  n - m  ÿêùî  n>m
à òàêîæ ä³é n ¬  n+m;  m ¬  m+n.
          Âèá³ð ïîòð³áíî¿ ä³¿ ñåðåä
ïåðåë³÷åíèõ âèøå íåîáõ³äíî çä³éñíèòè îäíî÷àñíî ç ïîøóêîì îáìåæóâàëüíî¿ ôóíêö³¿.
ßêùî çà òàêó ôóíêö³þ âçÿòè B(m,n)=m+n
, à çà óìîâó ïîâòîðåííÿ öèêëó óìîâó m<>n
, òî ôóíêö³ÿ B(m,n)
áóäå ñïàäàòè ï³ä 䳺þ ïåðøî¿ ñóêóïíîñò³ ïåðåòâîðåíü. Ùîá ïðèâåñòè öþ
ôóíêö³þ ó â³äïîâ³äí³ñòü ç óìîâîþ ñê³í÷åííîñò³, ïåðåéäåìî äî p³çíèö³ B1(m,n) =
B(m,n) - 2ÍÑÄ(m,n). Îòðèìàºìî
àëãîðèòì
          àëãîðèòì
ÍÑÄ öå
                   çì³í
m,n :íàò;
          ïî÷
                   ïîâò
                             âçÿòè (m,n)
                   äî
m>0 & n>0;
                   ïîêè
m<>n ïîâò
                             ÿêùî m>n òî m ¬  m-- n 
                             ³íàêøå
n ¬
 n - m
                             êð
                   êö;
                   ïîêàçàòè (m)
          êà.
          Ïîêàçàòè, ùî ôóíêö³ÿ B1(m,n) ä³éñíî º îáìåæóâàëüíîþ
ôóíêö³ºþ îòðèìàíîãî öèêëó.
          Ðîçâ`ÿçîê 2. Äðóãèé
ñïîñ³á ïîëÿãຠó ðîçãëÿä³ ³íøî¿ óìîâè  òðèâ³àëüíîñò³
îá÷èñëåííÿ ÍÑÄ, íàïðèêëàä ÍÑÄ(m,0)=m. Ôóíêö³ÿ ÍÑÄ ³íâàð³àíòíà â³äíîñíî
ïåðåòâîðåíü m ¬  n;
n ¬  m mod n. ßêùî çà îáìåæóâàëüíó ôóíêö³þ âçÿòè B(n)=n,
à çà óìîâó ïîâòîðåííÿ öèêëó óìîâó n<>0,
òî ôóíêö³ÿ B(n) áóäå ñïàäàòè ï³ä 䳺þ âêàçàíèõ ïåðåòâîðåíü. Îòðèìàºìî àëãîðèòì
          àëãîðèòì
ÍÑÄ öå
                   çì³í
m,n :íàò:
          ïî÷
                   ïîâò
                             âçÿòè (m,n)
                   äî
m>0 & n>0 ;
                   ïîêè
n<>0 ïîâò
                             l¬ m; m¬ n; n¬ l mod n
                   êö;
                   ïîêàçàòè (m)
          êà.
          4.8. Ñêëàñòè àëãîðèòì îá÷èñëåííÿ äîáóòêó äâîõ
íàòóðàëüíèõ ÷èñåë, êîðèñòóþ÷èñü îïåðàö³ÿìè äîäàâàííÿ òà ä³ëåííÿ íàâï³ë.
          4.9. Ñêëàñòè àëãîðèòì îá÷èñëåííÿ ñòåïåíÿ y=xn íàòóðàëüíîãî ïîêàçíèêà, âèêîðèñòîâóþ÷è ò³ëüêè îïåðàö³¿ ìíîæåííÿ òà ä³ëåííÿ
íàâï³ë. 
          Ðîçâ`ÿçîê. Ðîçãëÿíåìî ôóíêö³þ y=zxk. Ïðè z=1 ³ k=n âîíà äaº øóêàíó âåëè÷èíy y=xn. Ïðè k=0 ôóíêö³ÿ y=zxk îá÷èñëþºòüñÿ òðèâ³àëüíî : y=z. Öÿ ôóíêö³ÿ º ³íâàð³àíòíîþ â³äíîñíî ïåðåòâîðåíü 
                   x¬ x¬ x,
k¬ k/2;
                   z¬ z¬ x,
k¬ k-1.
          Ïåðøó ïàðó ä³é ìîæíà
çàñòîñîâóâàòè ïðè ïàðíîìó k, äðóãó äîðå÷íî çàñòîñîâóâàòè ïðè
íåïàðíîìó k. Óìîâà çàê³í÷åííÿ k=0. Îòðèìàºìî àëãîðèòì 
                   àëã 
ñòåï³íü   öå
                             çì³í
n,k: íàò; x,z : ä³éñí;
                   ïî÷
                             âçÿòè(n,x);
                             z¬ 1; k¬ n;
                             ïîêè
k <> 0 ïîâò
                                      ÿêùî
k mod 2=0 òî
                                                x¬ x*x; k¬ k div 2
                                      ³íàêøå
                                                z¬ z* k; k¬ k-1;
                                      êð
                             êö;
                             ïîêàçàòè(z)
                   êà.
          Îáìåæóâàëüíó ôóíêö³þ ïîáóäóâàòè
ñàìîñò³éíî.